Gatlin, D. M. III. et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquacult. Res. 38, 551–579 (2007).
Abdel Rahman, A. N. et al. Using Azadirachta indica protein hydrolysate as a plant protein in Nile tilapia (Oreochromis niloticus) diet: Effects on the growth, economic efficiency, antioxidant-immune response and resistance to Streptococcus agalactiae. J. Anim. Physiol. Anim. Nutr. (Berl.) 107(6), 1502–1516 (2023).
Rahman, A. N. A. et al. Neem seed protein hydrolysate as a fishmeal substitute in Nile tilapia: Effects on antioxidant/immune pathway, growth, amino acid transporters-related gene expression, and Aeromonas veronii resistance. Aquaculture 573, 739593 (2023).
Ibrahim, R. E. et al. Effect of fish meal substitution with dried bovine hemoglobin on the growth, blood hematology, antioxidant activity and related genes expression, and tissue histoarchitecture of Nile tilapia (Oreochromis niloticus). Aquac. Rep. 26, 101276 (2022).
Amer, S. A. et al. Impact of partial substitution of fish meal by methylated soy protein isolates on the nutritional, immunological, and health aspects of Nile tilapia Oreochromis niloticus fingerlings. Aquaculture 518, 734871 (2020).
Amer, S. A. et al. The effect of dietary replacement of fish meal with whey protein concentrate on the growth performance, fish health, and immune status of Nile Tilapia fingerlings, Oreochromis niloticus. Animals 9(12), 1003 (2019).
Amer, S. A. et al. Use of moringa protein hydrolysate as a fishmeal replacer in diet of Oreochromis niloticus: Effects on growth, digestive enzymes, protein transporters and immune status. Aquaculture 579, 740202 (2024).
Cheng, Z. Y. et al. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass Lateolabrax japonicus. Aquaculture 305, 102–108 (2010).
Liu, H. et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forssk’al) (1775). Aquacult. Nutr. 26, 1724–1735 (2020).
Liu, X. H. et al. Partial replacement of fish meal with peanut meal in practical diets for the Pacific white shrimp Litopenaeus vannamei. Aquacult. Res. 43, 745–755 (2012).
Glencross, B. D. et al. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquacult. 12, 703–758 (2020).
Vega-Galvez, A. et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. J. Sci. Food. Agric. 90, 2541–2547 (2010).
Tang, Y. et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food. Chem. 166, 380–388 (2015).
Nowak, V., Du, J. & Charrondiere, U. R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 193, 47–54 (2016).
Gomez-Caravaca, A. M., Iafelice, G., Verardo, V., Marconi, E. & Caboni, M. F. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chem. 157, 174–178 (2014).
Park, J. H., Lee, Y. J., Kim, Y. H. & Yoon, K. S. Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Prev. Nutr. Food Sci. 22, 195–202 (2017).
Kumar, N., Gupta, S. K., Bhushan, S. & Singh, N. P. Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in fish. Aquat. Toxicol. 214, 105233 (2019).
Kumar, N. et al. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular signature in fish. J. Trace Elem. Med. Biol. 74, 127076 (2022).
Randall, D. J. & Tsui, T. K. N. Ammonia toxicity in fish. Mar. Pollut. Bull. 45(1–12), 17–23 (2002).
Kumar, N. et al. Nano-zinc enhances gene regulation of non-specific immunity and antioxidative status to mitigate multiple stresses in fish. Sci. Rep. 13, 5015 (2023).
Benli, A. C. K., Oksal, G. K. & Ozkul, A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 72, 1355–1358 (2008).
Kim, J. H., Kang, Y. J., Kim, K. I., Kim, S. K. & Kim, J. H. Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive lounder, Paralichthys olivaceus. Environ. Toxicol. Pharmacol. 67, 73–78 (2019).
Kumar, N., Chandan, N. K., Bhushan, S., Singh, D. K. & Kumar, S. Health risk assessment and metal contamination in fish, water and soil sediments in the East Kolkata Wetlands, India, Ramsar site. Sci. Rep. https://doi.org/10.1038/s41598-023-28801-y (2023).
Shaji, E. et al. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 12, 101079 (2021).
Ye, Y., Gaugler, B., Mohty, M. & Malard, F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br. J. Pharmacol. 177, 2199–2214 (2020).
Kannan, K. & Jain, S. K. Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000).
Lynn, S., Lai, H. T., Gurr, J. R. & Jan, K. Y. Arsenic retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis 12, 353–358 (1997).
Liang, H. et al. Effects of dietary copper on growth, antioxidant capacity and immune responses of juvenile blunt snout bream (Megalobrama amblycephala) as evidenced by pathological examination. Aquac. Rep. 17, 100296 (2020).
Bears, H., Richards, J. G. & Schulte, P. M. Arsenic exposure alters hepatic arsenic species composition and stress mediated-gene expression in the common killifish (Fundulus heteroclitus). Aquat. Toxicol. 77, 257–266 (2006).
Ghosh, D., Datta, S., Bhattacharya, S. & Mazumder, S. Long-term exposure to arsenic affects head kidney and impairs humoral immune responses of Clarias batrachus. Aquat. Toxicol. 81, 79–89 (2007).
Kumar, N., Singh, D. K., Bhushan, S. & Jamwal, A. Mitigating multiple stresses in Pangasianodon hypophthalmus with a novel dietary mixture of selenium nanoparticles and Omega-3-fatty acid. Sci. Rep. 11, 19429 (2021).
Kumar, N., Thorat, S. T., Kochewad, S. A. & Reddy, K. S. Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFkB mechanism in fish. Sci. Rep. 14, 1273. https://doi.org/10.1038/s41598-024-51740-1 (2024).
FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
APHA-AWWA-WEF, in: L.S. Clesceri, A.E. Greenberg, A.D. Eaton (Eds) (1998) Standard methods for the estimation of water and waste water, twentieth ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC
AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edn, AOAC International, Arlington, 31–65(1995).
Halver, J. E. The nutritional requirements of cultivated warm water and cold water fish species in Report of the FAO Technical Conference on Aquaculture, Kyoto, Japan, 26 May–2 June 1976. FAO Fisheries Report No. 188 FI/ R188 (En), 9 (1976).
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29(9), e45 (2001).
Kumar, N., Krishnani, K. K., Meena, K. K., Gupta, S. K. & Singh, N. P. Oxidative and cellular metabolic stress of Oreochromis mossambicus as biomarkers indicators of trace element contaminants. Chemosphere 171, 265–274 (2017).
Kumar, N., Krishnani, K. K. & Singh, N. P. Oxidative and cellular stress as bioindicators for metals contamination in freshwater mollusk Lamellidens marginalis. Environ. Sci. Pollut. Res. 24(19), 16137–16147 (2017).
Wells, R. M. & Pankhurst, N. W. Evaluation of simple instruments for the measurement of blood glucose and lactate, and plasma protein as stress indicators in fish. J. World Aquac. Soc. 30, 276–284 (1999).
Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 9, 211 (1999).
Thang, N. Q., Huy, B. T., Tan, L. V. & Phuong, N. T. K. Lead and arsenic accumulation and its effects on plasma cortisol levels in Oreochromis sp.. Bull. Environ. Contam. Toxicol. 99(2), 187–193 (2017).
Liew, H. J. et al. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat. Toxicol. 126, 63–76 (2013).
Caroprese, M. et al. Relationship between cortisol response to stress and behavior, immune profile, and production performance of dairy ewes. J. Dairy Sci. 93, 2395–2403 (2010).
Kumar, N., Thorat, S. T., Chavhan, S. & Reddy, K. S. Understanding the molecular mechanism of arsenic and ammonia toxicity and high-temperature stress in Pangasianodon hypophthalmus. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-024-32093-8 (2024).
Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).
Cheng, C. H. et al. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat. Toxicol. 164, 61–71 (2015).
Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res. 31, 261–272 (1999).
Han, C. et al. Quinoa husk peptides reduce melanin content via Akt signaling and apoptosis pathways. iScience. 26(1), 105721 (2023).
Anwar-Mohamed, A. et al. Acute arsenic toxicity alters cytochrome P450 and soluble epoxide hydrolase and their associated arachidonic acid metabolism in C57Bl/6 mouse heart. Xenobiotica. 42(12), 1235–1247 (2012).
Buhler, D. R. & Williams, D. E. The role of biotransformation in the toxicity of chemicals. Aquat. Toxicol. 11(1–2), 19–28 (1988).
Hassanin, A. A. & Kaminishi, Y. A novel cytochrome P450 1D1 gene in Nile tilapia fish (Oreochromis niloticus): Partial cDNA cloning and expression following benzo-a-pyrene exposure. Int. Aquat. Res. 11, 277–285 (2019).
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35(4), 495–516 (2007).
Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. 9, 231–241 (2008).
He, X. & Ma, Q. Induction of metallothionein I by arsenic via metal-activated transcription factor 1: Critical role of C-terminal cysteine residues in arsenic sensing. J. Biol. Chem. 284, 12609–12621 (2009).
Zielińska, M. et al. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y (+) LAT2 transporter. J. Neurochem. 135(6), 1272–1281 (2015).
Gorg, B., Schliess, F. & Haussinger, D. Osmotic and oxidative/nitrosative stress in ammonia toxicity and hepatic encephalopathy. Arch. Biochem. Biophys. 536, 158–163 (2013).
Saha, R. N. & Pahan, K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid. Redox. Signal. 8, 929–947 (2006).
Yekta, M. M. et al. Peptide extracted from quinoa by pepsin and alcalase enzymes hydrolysis: Evaluation of the antioxidant activity. J. Food Process. Preserv. 44, e14773 (2020).
Olivera-Montenegro, L., Best, I. & Gil-Saldarriaga, A. Effect of pretreatment by supercritical fluids on antioxidant activity of protein hydrolyzate from quinoa (Chenopodium quinoa Willd.). Food Sci. Nutr. 9(1), 574–582 (2021).
Hernandez-Ledesma, B. Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: A review. Bioact. Compd. Health Dis. 2, 27 (2019).
Duan, R. et al. Isorhamnetin induces melanoma cell apoptosis via the PI3K/Akt and NF- κ B pathways. BioMed. Res. Int. 2020, 1–11 (2020).
Kumar, N., Thorat, S. T., Gite, A. & Patole, P. B. Nano-copper enhances gene regulation of non-specific immunity and antioxidative status of fish reared under multiple stresses. Biol. Trace Elem. Res. 201, 4926–4950 (2023).
Kumar, N., Thorat, S. T. & Chavhan, S. Multifunctional role of dietary copper to regulate stress-responsive gene for mitigation of multiple stresses in Pangasianodon hypophthalmus. Sci. Rep. 14, 2252. https://doi.org/10.1038/s41598-024-51170-z (2024).
Ahmed, S. A. A. et al. Influence of feeding quinoa (Chenopodium quinoa) seeds and prickly pear fruit (Opuntia ficus indica) peel on the immune response and resistance to Aeromonas sobria infection in Nile Tilapia (Oreochromis niloticus). Animals (Basel). 10(12), 2266 (2020).
Fan, S., Li, J. & Bai, B. Purification, structural elucidation and in vivo immunity-enhancing activity of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Biosci. Biotechnol. Biochem. 83, 2334–2344 (2019).
Li, M. et al. Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli. Fish Shellfish Immunol. 38(1), 158–165 (2014).
Kumar, N. Dietary riboflavin enhances immunity and anti-oxidative status against arsenic and high temperature in Pangasianodon hypophthalmus. Aquaculture. 533, 736209 (2022).
Yu, Z. et al. Dietary Taraxacum mongolicum polysaccharide ameliorates the growth, immune response, and antioxidant status in association with NF-κB, Nrf2 and TOR in Jian carp (Cyprinus carpio var. Jian). Aquaculture 547, 737522 (2022).
Yu, Z., Huang, Z.-Q., Du, H.-L., Li, H.-J. & Wu, L.-F. Influence of differential protein levels of feed on growth, copper-induced immune response and oxidative stress of Rhynchocypris lagowski in a biofloc-based system. Aquac. Nutr. 26(6), 2211–2224 (2020).
Delos, C. and Erickson, R. Update of ambient water quality criteria for ammonia. EPA/822/R-99/014. Final/technical report. Washington, DC: U.S. Environmental Protection Agency, (1999).
El-Shafai, S. A., El-Gohary, F. A., Nasr, F. A., Van Der Steen, N. P. & Gijzen, H. J. Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquaculture 232(1–4), 117–127 (2004).
Farombi, E. O., Adelowo, O. A. & Ajimoko, Y. R. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African catfish (Clarias gariepinus) from Nigeria Ogun River. Int. J. Environ. Res. Public Health 4, 158–165 (2007).
Klein, S. F. & Sheridan, M. A. Somatostatin signaling and the regulation of growth and metabolism in fish. Mol. Cell Endocrinol. 286, 148–154 (2018).
Bass, J., Oldham, J., Sharma, M. & Kambadur, R. Growth factors controlling muscle development. Domest. Anim. Endocrinol. 17, 191–197 (1999).
McFarlane, C. et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J. Cell. Physiol. 209, 501–514 (2006).