
FAO. The state of World fisheries and Aquaculture 2022. Towards Blue Transformation. Rome FAO. https://doi.org/10.4060/cc0461en (2022).
Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1(3), 316–329 (2019).
Qiu, X. et al. Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei. J. Appl. Phycol. 30, 1305–1316 (2018).
Kumar, N., Thorat, S. T., Pradhan, A., Rane, J. & Reddy, K. S. Significance of dietary QH (Chenopodium quinoa) in gene regulation for stress mitigation in fish. Sci. Rep. 14(1), 7647 (2024).
Tang, Y. et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. Genotypes. Food Chem. 166, 380–388 (2015).
Vilcacundo, R. & Hernández-Ledesma, B. Nutritional and biological value of Quinoa (Chenopodium quinoa Willd). Curr. Opin. Food Sci. 14, 1–6 (2017).
Wu, G. Nutritional Properties of Quinoa. In Quinoa: Improvement and Sustainable Production (Wiley, 2015).
Li, L., Lietz, G. & Seal, C. J. Phenolic apparent antioxidant and nutritional composition of Quinoa (Chenopodium quinoa Willd.) Seeds. Int. J. Food Sci. Technol. 56, 3245–3254 (2021).
Vega-Galvez, A. et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J. Sci. Food Agric. 90, 2541–2547 (2010).
Nowak, V., Du, J. & Charrondiere, U. R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd). Food Chem. 193, 47–54 (2016).
Gomez-Caravaca, A. M., Iafelice, G., Verardo, V., Marconi, E. & Caboni, M. F. Inluence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chem. 157, 174–178 (2014).
Kumar, N., Thorat, S. T., Gite, A. & Patole, B. P. Selenium nanoparticles and omega-3 fatty acid enhanced thermal tolerance in fish against arsenic and high temperature. Comp. Biochem. Physiol. C. 261, 109447 (2022).
Kumar, N. Dietary riboflavin enhances immunity and anti-oxidative status against arsenic and high temperature in Pangasianodon Hypophthalmus. Aquaculture 533, 736209 (2021).
Shaji, E. et al. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci. Front. 12, 101079 (2021).
Ye, Y., Gaugler, B., Mohty, M. & Malard, F. Old dog, new trick: trivalent arsenic as an immunomodulatory drug. Br. J. Pharmacol. 177, 2199–2214 (2020).
IARC International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: A Review of Human Carcinogens: Arsenic, Metals, Fibres, and Dusts Vol. 100C (World Health Organization, 2012).
Kumar, N., Thorat, S. & Reddy, K. S. Multi biomarker approach to assess manganese and manganese nanoparticles toxicity in Pangasianodon Hypophthalmus. Sci. Rep. https://doi.org/10.1038/s41598-023-35787-0 (2023).
Mohanty, B. P., Mitra, T., Ganguly, S., Sarkar, S. D. & Mahanty, A. Curcumin has protective effect on the eye lens against arsenic toxicity. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-020-02448-6 (2020).
Kumar, N., Thorat, S. T., Chavhan, S. R. & Reddy, K. S. Understanding the molecular mechanism of arsenic and ammonia toxicity and high-temperature stress in Pangasianodon Hypophthalmus. Environ. Sci. Pollut. Res. 31(10), 15821–15836 (2024).
Cheng, Z. Y. et al. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass. Lateolabrax japonicus. Aquaculture 305, 102–108 (2010).
Liu, H. et al. Effects of fish meal replacement by low-gossypol cottonseed meal on growth performance, digestive enzyme activity, intestine histology and inflammatory gene expression of silver sillago (Sillago sihama Forssk’Al) (1775). Aquacult. Nutr. 26, 1724–1735 (2020).
Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68(5), 893–905 (1999).
Kumar, N., Thorat, S. T., Gite, A. & Patole, P. B. Nano-copper enhances gene regulation of non-specific immunity and antioxidative status of fish reared under multiple stresses. Biol. Trace Elem. Res. 201(10), 4926–4950 (2023).
Kumar, N. et al. Nano–copper enhances thermal efficiency and stimulates gene expression in response to multiple stresses in Pangasianodon hypophthalmus (striped catfish). Aquaculture 564, 739059 (2023).
Kumar, N. et al. Nano-zinc enhances gene regulation of non-speciic immunity and antioxidative status to mitigate multiple stresses in ish. Sci. Rep. 13(1), 5015 (2023).
Kumar, N., Thorat, S. T., Kochewad, S. A. & Reddy, K. S. Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFkB mechanism in fish. Sci. Rep. 14, 1273. https://doi.org/10.1038/s41598-024-51740-1 (2024).
Kumar, N. et al. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular signature in fish. J. Trace Elem. Med. Biol. 1(74), 127076 (2022).
APHA-AWWA-WEF. In. in Standard Methods for the Estimation of Water and Waste Water. 20th edn (eds Clesceri, L. S., Greenberg, A. E. & Eaton, A. D.) (American Public Health Association, 1998).
Kumar, N., Singh, D. K., Bhushan, S. & Jamwal, A. Mitigating multiple stresses in Pangasianodon hypophthalmus with a novel dietary mixture of selenium nanoparticles and Omega–3–fatty acid. Sci. Rep. 11, 19429 (2021).
Kumar, N., Gupta, S. K., Bhushan, S. & Singh, N. P. Impacts of acute toxicity of arsenic (III) alone and with high temperature on stress biomarkers, immunological status and cellular metabolism in ish. Aquat. Toxicol. 1(214), 105233 (2019).
AOAC. Oicial Methods of Analysis of the Association of Oicial Analytical Chemists 16th edn 31–65 (AOAC International, 1995).
Halver, J. E. The nutritional requirements of cultivated warm water and cold water ish species. In Report of the FAO Technical Conference on Aquaculture, Kyoto, Japan, 26 May–2 June 1976. FAO Fisheries Report No. 188 FI/ R188 (En), p. 9 (1976).
Lowry, O. H., Ronebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265–276 (1951).
Takahara, S. et al. Hypocatalesemia, a new generis carrier state. J. Clin. Invest. 29, 610–619 (1960).
Misra, H. P. & Fridovich, I. T. Role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972).
Habing, W. H., Pabst, M. N., Bjacoby, W. & Glutathion, S. Transferase, the frst enzymatic step in mercatpopunc acid formation. J. Biol. Chem. 249, 7130–7138 (1974).
Paglia, D. E. & Valentine, W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70(1), 158–169 (1967).
Hestrin, S. He reaction of acetyl choline esters and other carboxylic acid derivatives with hydroxyline and its analytical application. J. Bio Chem. 180, 249–261 (1949).
Wootton, I. D. P. Microanalysis. In Medical Biochemistry (ed. J. Churchill) 4th edn, 101–107 (1964).
Wroblewski, L. & LaDue, J. S. Lactic dehydrogenase activity in blood. Proc. Soc. Exp. Biol. Med. 90, 210–213 (1955).
Ochoa, S. Malic dehydrogenase and ‘malic’ enzyme. In Methods of Enzymology (eds Coloric, S. P. & Kaplan, N.) Vol. I 735–745 (Academic, 1955).
Stasiack, A. S. & Bauman, C. P. Neutrophil activity as a potent indicator concomitant analysis. Fish. Shellfsh Immunol. 37, 539 (1996).
Doumas, B. T., Watson, W. & Biggs, H. G. Albumin standards and measurement of serum albumin with bromocresol green. Clin. Chim. Acta 31, 87–96 (1971).
Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380 (1944).
Somoyogi, M. A new reagent for the determination of sugars. J. Biol. Chem. 160, 61–68 (1945).
Quade, M. J. & Roth, J. A. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet. Immunol. Immunopathol. 58, 239–248 (1997).
Sahoo, P. K., Kumari, J. & Mishra, B. K. Non-specifc immune responses in juveniles of Indian major carps. J. Appl. Ichthyol. 21, 151–155 (2005).
Anderson, D. P. & Siwicki, A. K. Basic haematology and serology for fish health programmes. In Diseases in Asian Aquaculture II. Fish Health Section (eds. Shhariff, J. R. & Subasinghe, R. P.) 185–202 (Asian Fisheries Society, 1995).
Drapeau, G. R. Protease from staphylococcus aureus. Methods Enzymol. 45, 469–475 (1978).
Rick, W. & Stegbauer, H. P. Amylase measurement of reducing groups. In Methods of Enzymatic Analysis (ed. Bergmeyer, H. V.), vol 2, 2nd edn 885–889 (Academic, 1974).
Cherry, I. S. & Crandall, J. L. A. The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. AJP-Legacy 100(2), 266–273 (1932).
Robert, R. J. Fish Pathology and Edn 466 (Bailli Tindall, 1989).
Samtiya, M., Aluko, R. E. & Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod. Process. Nutr. 2, 6 (2020).
Hu, Y. et al. The role of reactive oxygen species in arsenic toxicity. Biomolecules 10, 240 (2020). (2020).
Lima, A. M. A., de Bruin, V. M. S., Rios, E. R. V. & Bruin P. F. C. Differential effects of paradoxical sleep deprivation on memory and oxidative stress. Naunyn. Schmiedebergs Arch. Pharmacol. 387(5), 399–406 (2014).
Han, C. et al. QH peptides reduce melanin content via akt signaling and apoptosis pathways. iScience 26(1), 105721 (2023).
Kumar, N., Thorat, S. T., Gunaware, M. A., Kumar, P. & Reddy, K. S. Unraveling gene regulation mechanisms in fish: insights into multistress responses and mitigation through iron nanoparticles. Front. Immunol. 15, 1410150 (2024).
Ong, E. S., Pek, C. J. N., Tan, J. C. W. & Leo, C. H. Antioxidant and cytoprotective effect of Quinoa (Chenopodium quinoa Willd.) With pressurized Hot Water extraction (PHWE). Antioxidants 9, 1110 (2020).
Sogorb, M. A. & Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett. 128, 215–228 (2002).
Souza, S. P. et al. Neuroprotective effect of red quinoa seeds extract on scopolamine-induced declarative memory deficits in mice: the role of acetylcholinesterase and oxidative stress. J. Funct. Foods. 69, 103958 (2020).
Nel, A. E. et al. Thompson M understanding biophysicochemical interactions at the nanobiointerface. Nat. Mater. 8, 543–557 (2009).
Kumar, N., Thorat, S. T., Patole, P. B., Gite, A. & Reddy, K. S. Protective role of selenium and selenium-nanoparticles against multiple stresses in Pangasianodon Hypophthalmus. Fish. Physiol. Biochem.. https://doi.org/10.1007/s10695-023-01231-3 (2023).
Kumar, N., Jadhao, S. B., Chandan, N. K., Aklakur, M. & Rana, R. S. Methyl donors potentiates growth, metabolic status and neurotransmitter enzyme in Labeo rohita fingerlings exposed to endosulfan and temperature. Fish Physiol. Biochem. 38, 1343–1353 (2012).
Al-Qabba, M. M. et al. Phenolic profile, antioxidant activity, and ameliorating efficacy of chenopodium quinoa sprouts against CCl4-induced oxidative stress in rats. Nutrients 12(10), 2904 (2020).
Cao, Y., Zou, L., Li, W., Song, Y. & Zhao, G. Hu Dietary quinoa (Chenopodium quinoa Willd.) Polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Int. J. Biol. Macromol. 163, 55–65 (2020).
Zheng, C-Y. et al. Revealing the mechanism of quinoa on type 2 diabetes based on intestinal flora and taste pathways. Food Sci Nutr. 23, 7930–7945 (2023).
Sharp, G. J. E. & Secombes, C. J. The role of reactive oxygen species in the killing of the bacterial fish pathogen Aeromonas salmonicida by rainbow trout macrophages. Fish. Shellfish Immunol. 3, 119–129 (1993).
Busher, J. T. Serum Albumin and Globulin. Clinical Methods: The History, Physical, and Laboratory Examinations(eds. Walker, H. K. et al.) 3rd edn (Butterworths, 1990). ISBN-10: 0-409-90077-X.
Wiegertjes, G. F., Stet, R. J. M., Parmentier, H. K. & Van Muiswinkel, W. B. Immunogenetics of disease resistance in fish; a comparable approach. Dev. Comp. Immunol. 20, 365–381 (1996).
Choudhury, D. et al. Dietary yeast RNA supplementation reduces mortality by Aeromonas hydrophila in rohu (Labeo rohita) juveniles. Fish. Shellfish Immunol. 19, 281–291 (2005).
Beutler, B. Innate immunity: an overview. Mol. Immunol. 40, 845–859 (2004).
Dimitroglou, A. et al. Dietary mannan oligosaccharide supplementation modulates intestinal microbial ecology and improves gut morphology of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Anim. Sci. 87, 3226–3234 (2009).
Kumar, N., Chandan, N. K., Wakchaure, G. C. & Singh, N. P. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp. Biochem. Physiol. Part- C: Toxicol. Pharmacol. 229, 108678 (2020).
Kumar, N., Krishnani, K. K., Gupta, S. K. & Singh, N. P. Cellular stress and histopathological tools used as biomarkers in Oreochromis mossambicus for assessing metal contamination. Environ. Toxicol. Pharmacol. 49, 137–147 (2017).