
Bhargava A, Shukla S, Ohri D. Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa willd). Field Crops Res. 2007;101(1):104–16. https://doi.org/10.1016/j.fcr.2006.10.001.
Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric. 2010;90(15):2541–7. https://doi.org/10.1002/jsfa.4158.
Le L, Gong X, An Q, Xiang D, Zou L, Peng L, Wu X, Tan M, Nie Z, Wu Q, Zhao G, Wan Y. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chem. 2021;357:129752. https://doi.org/10.1016/j.foodchem.2021.129752. Advance online publication.
Pathan S, Siddiqui RA. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd). Greens: Rev Nutrients. 2022;14(3):558. https://doi.org/10.3390/nu14030558.
Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 2007;581(12):2281–9. https://doi.org/10.1016/j.febslet.2007.04.013.
Nanjareddy K, Guerrero-Carrillo MF, Lara M, Arthikala MK. Genome-wide identification and comparative analysis of the Amino Acid Transporter (AAT) gene family and their roles during Phaseolus vulgaris symbioses. Funct Integr Genom. 2024;24(2):47. https://doi.org/10.1007/s10142-024-01331-0.
Zhao H, Ma H, Yu L, Wang X, Zhao J. Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L). PLoS ONE. 2012;7(11):e49210. https://doi.org/10.1371/journal.pone.0049210.
Cheng L, Yuan HY, Ren R, Zhao SQ, Han YP, Zhou QY, Ke DX, Wang YX, Wang L. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max. Front Plant Sci. 2016;7:515. https://doi.org/10.3389/fpls.2016.00515.
Tian R, Yang Y, Chen M. Genome-wide survey of the amino acid transporter gene family in wheat (Triticum aestivum L.): Identification, expression analysis and response to abiotic stress. Int J Biol Macromol. 2020;162:1372–87. https://doi.org/10.1016/j.ijbiomac.2020.07.302.
Yang Y, Chai Y, Liu J, Zheng J, Zhao Z, Amo A, Cui C, Lu Q, Chen L, Hu YG. Amino acid transporter (AAT) gene family in foxtail millet (Setaria italica L.): widespread family expansion, functional differentiation, roles in quality formation and response to abiotic stresses. BMC Genomics. 2021;22(1):519. https://doi.org/10.1186/s12864-021-07779-9.
Yang Y, Wang X, Zheng J, Men Y, Zhang Y, Liu L, Han Y, Hou S, Sun Z. Amino acid transporter (AAT) gene family in Tartary buckwheat (Fagopyrum tataricum L. Gaertn.): Characterization, expression analysis and functional prediction. Int J Biol Macromol. 2022;217:330–44. https://doi.org/10.1016/j.ijbiomac.2022.07.059.
Ma H, Cao X, Shi S, Li S, Gao J, Ma Y, Zhao Q, Chen Q. Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L). Plant Physiol Biochem. 2016;107:164–77. https://doi.org/10.1016/j.plaphy.2016.06.007.
A WNF, Bruno André b A, D. R.A, S. K.A, M. T.& A, K. B., et al. Amino acid transport in plants. Trends Plantence. 1998;3(5):188–95. https://doi.org/10.1016/S1360-1385(98)01231-X.
Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C. The Transporter Classification Database: recent advances. Nucleic Acids Res. 2009;37:D274–8. https://doi.org/10.1093/nar/gkn862.
Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W. High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem. 2002;277(47):45338–46. https://doi.org/10.1074/jbc.M207730200.
Chen L, Bush DR. LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis. Plant Physiol. 1997;115(3):1127–34. https://doi.org/10.1104/pp.115.3.1127.
Foster J, Lee YH, Tegeder M. Distinct expression of members of the lht amino acid transporter family in flowers indicates specific roles in plant reproduction. Sex Plant Reprod. 2008;21(2):143–52. https://doi.org/10.1007/s00497-008-0074-z.
Guo N, Zhang S, Gu M, Xu G. Function, transport, and regulation of amino acids: what is missing in rice? Crop J. 2021;9(3):530–42. https://doi.org/10.1016/j.cj.2021.04.002.
Ji Y, Huang W, Wu B, Fang Z, Wang X. The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. J Exp Bot. 2020;71(16):4763–77. https://doi.org/10.1093/jxb/eraa256.
Yao X, Nie J, Bai R, Sui X. Amino Acid Transporters in Plants: Identification and Function. Plants (Basel Switzerland). 2020;9(8):972. https://doi.org/10.3390/plants9080972.
Forde BG, Lea PJ. Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot. 2007;58(9):2339–58. https://doi.org/10.1093/jxb/erm121.
Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids. 2010;39(4):949–62. https://doi.org/10.1007/s00726-010-0525-3.
Na GUO, Dong XUE, Wei, ZHANG, et al. Overexpression of gmprot1 and gmprot2 increases tolerance to drought and salt stresses in transgenic arabidopsis. J Integr Agric. 2016;15(8):1727–43. https://doi.org/10.1016/S2095-3119(15)61288-6.
Breitkreuz KE, Shelp BJ, Fischer WN, Schwacke R, Rentsch D. Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett. 1999;450(3):280–4. https://doi.org/10.1016/s0014-5793(99)00516-5.
Shi P, Jiang R, Li B, Wang D, Fang D, Yin M, Yin M, Gu M. Genome-Wide Analysis and Expression Profiles of the VOZ Gene Family in Quinoa (Chenopodium quinoa). Genes. 2022;13(10):1695. https://doi.org/10.3390/genes13101695.
Tiwari S, Vaish S, Singh N, Basantani M, Bhargava A. (2024). Correction: Genome-wide identification and characterization of glutathione S-transferase gene family in quinoa (Chenopodium quinoa Willd.). 3 Biotech, 14(11), 265. https://doi.org/10.1007/s13205-024-04076-6
Yue H, Chang X, Zhi Y, Wang L, Xing G, Song W, Nie X. Evolution and Identification of the WRKY Gene Family in Quinoa (Chenopodium quinoa). Genes. 2019;10(2):131. https://doi.org/10.3390/genes10020131.
Chen Y, Lin Y, Zhang S, Lin Z, Chen S, Wang Z. Genome-Wide Identification and Characterization of the HAK Gene Family in Quinoa (Chenopodium quinoa Willd.) and Their Expression Profiles under Saline and Alkaline Conditions. Plants. 2023;12(21):3747. https://doi.org/10.3390/plants12213747.
Yin L, Zhang X, Gao A, Cao M, Yang D, An K, Guo S, Yin H. Genome-Wide Identification and Expression Analysis of 1-Aminocyclopropane-1-Carboxylate Synthase (ACS) Gene Family in Chenopodium quinoa. Plants. 2023;12(23):4021. https://doi.org/10.3390/plants12234021.
Margheritis E, Imperiali FG, Cinquetti R, Vollero A, Terova G, Rimoldi S, Girardello R, Bossi E. Amino acid transporter B(0)AT1 (slc6a19) and ancillary protein: impact on function. Pflug Arch: Eur J Physiol. 2016;468(8):1363–74. https://doi.org/10.1007/s00424-016-1842-5.
Tegeder M, Rentsch D. Uptake and partitioning of amino acids and peptides. Mol Plant. 2010;3(6):997–1011. https://doi.org/10.1093/mp/ssq047.
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, Momin AA, Tester M. The genome of Chenopodium quinoa. Nature. 2017;542(7641):307–12. https://doi.org/10.1038/nature21370.
Li B, Jia Y, Xu L, Zhang S, Long Z, Wang R, Guo Y, Zhang W, Jiao C, Li C, Xu Y. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. Plant Biotechnol J. 2024;22(5):1282–98. https://doi.org/10.1111/pbi.14264.
Lee YH, Foster J, Chen J, Voll LM, Weber AP, Tegeder M. AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant journal: cell Mol biology. 2007;50(2):305–19. https://doi.org/10.1111/j.1365-313X.2007.03045.x.
Svennerstam H, Ganeteg U, Näsholm T. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol. 2008;180(3):620–30. https://doi.org/10.1111/j.1469-8137.2008.02589.x.
Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell. 2010;22(11):3603–20. https://doi.org/10.1105/tpc.110.073833.
Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett M, Bougourd S. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Botany. 2010;105(2):277–89. https://doi.org/10.1093/aob/mcp287.
Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89–97. https://doi.org/10.1016/j.tplants.2009.11.009.
Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D. The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol. 2005;137(1):117–26. https://doi.org/10.1104/pp.104.055079.
Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D. In planta function of compatible solute transporters of the AtProT family. J Exp Bot. 2011;62(2):787–96. https://doi.org/10.1093/jxb/erq320.
Lee YH, Tegeder M. Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. Plant journal: cell Mol biology. 2004;40(1):60–74. https://doi.org/10.1111/j.1365-313X.2004.02186.x.
Yang H, Krebs M, Stierhof YD, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 &4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids. J Plant Physiol. 2014;171(8):594–601. https://doi.org/10.1016/j.jplph.2013.11.012.
Rentsch D, Hirner B, Schmelzer E, Frommer WB. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell. 1996;8(8):1437–46. https://doi.org/10.1105/tpc.8.8.1437.
Ueda A, Shi W, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots. Plant Cell Physiol. 2001;42(11):1282–9. https://doi.org/10.1093/pcp/pce166.
Popova OV, Dietz KJ, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Mol Biol. 2003;52(3):569–78. https://doi.org/10.1023/a:1024802101057.
Chen X, Wu Z, Yin Z, Zhang Y, Rui C, Wang J, Malik WA, Lu X, Wang D, Wang J, Guo L, Wang S, Zhao L, Qaraevna Z, Chen B, Wang C, X., Ye W. Comprehensive genomic characterization of cotton cationic amino acid transporter genes reveals that GhCAT10D regulates salt tolerance. BMC Plant Biol. 2022;22(1):441. https://doi.org/10.1186/s12870-022-03829-w.
Wang K, Zhai M, Cui D, Han R, Wang X, Xu W, Qi G, Zeng X, Zhuang Y, Liu C. Genome-Wide Analysis of the Amino Acid Permeases Gene Family in Wheat and TaAAP1 Enhanced Salt Tolerance by Accumulating Ethylene. Int J Mol Sci. 2023;24(18):13800. https://doi.org/10.3390/ijms241813800.
Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. Plant Signal Behav. 2021;16(3):1862565. https://doi.org/10.1080/15592324.2020.1862565.
Hu L, Fan R, Wang P, Hao Z, Yang D, Lu Y, Shi J, Chen J. Identification, Phylogenetic and Expression Analyses of the AAAP Gene Family in Liriodendron chinense Reveal Their Putative Functions in Response to Organ and Multiple Abiotic Stresses. Int J Mol Sci. 2022;23(9):4765. https://doi.org/10.3390/ijms23094765.
Meyer A, Eskandari S, Grallath S, Rentsch D. AtGAT1, a high affinity transporter for gamma-aminobutyric acid in Arabidopsis thaliana. J Biol Chem. 2006;281(11):7197–204. https://doi.org/10.1074/jbc.M510766200.
Yang Y, Chai Y, Liu J, Zheng J, Zhao Z, Amo A, Cui C, Lu Q, Chen L, Hu YG. Amino acid transporter (AAT) gene family in foxtail millet (Setaria italica L.): widespread family expansion, functional differentiation, roles in quality formation and response to abiotic stresses. BMC Genomics. 2021;22(1):519. https://doi.org/10.1186/s12864-021-07779-9.
Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, Betts A, Herrmann J, Edwards EJ, Okamoto M, Hedrich R, Gilliham M. Author Correction: GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun. 2024;15(1):1737. https://doi.org/10.1038/s41467-024-46158-2.
Bai X, Xu J, Shao X, Luo W, Niu Z, Gao C, Wan D. A Novel Gene Coding γ-Aminobutyric Acid Transporter May Improve the Tolerance of Populus euphratica to Adverse Environments. Front Plant Sci. 2019;10:1083. https://doi.org/10.3389/fpls.2019.01083.
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. Plant Physiol Biochem. 2024;215:109084. https://doi.org/10.1016/j.plaphy.2024.109084.
Tegeder M, Tan Q, Grennan AK, Patrick JW. Amino acid transporter expression and localisation studies in pea (Pisum sativum). Funct Plant Biol. 2007;34(11):1019–28. https://doi.org/10.1071/FP07107.
Wan Y, King R, Mitchell RAC, Hassani-Pak K, Hawkesford MJ. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress. Sci Rep. 2017;7(1):5461. https://doi.org/10.1038/s41598-017-04473-3.
Chen H, Liu Y, Zhang J, Chen Y, Dai C, Tian R, Liu T, Chen M, Yang G, Wang Z, Li H, Cao X, Gao X. Amino acid transporter gene TaATLa1 from Triticum aestivum L. improves growth under nitrogen sufficiency and is down regulated under nitrogen deficiency. Planta. 2022;256(4):65. https://doi.org/10.1007/s00425-022-03978-0.
Zhang Y, Wang L, Song B-H, Zhang D, Zhang H. Genome-Wide Identification, Characterization, and Expression Analysis of the Amino Acid Permease Gene Family in Soybean. Agronomy. 2024;14(1):52. https://doi.org/10.3390/agronomy14010052.
Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. TBtools-II: A one for all, all for one bioinformatics platform for biological big-data mining. Mol Plant. 2023;16(11):1733–42. https://doi.org/10.1016/j.molp.2023.09.010.
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49(W1):W216–27. https://doi.org/10.1093/nar/gkab225.
Chou KC, Shen HB. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc. 2008;3(2):153–62. https://doi.org/10.1038/nprot.2007.494.
Tamura K, Stecher G, Kumar S. Mol Biol Evol. 2021;38(7):3022–7. https://doi.org/10.1093/molbev/msab120. MEGA11: Molecular Evolutionary Genetics Analysis Version 11.
Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52:W78–82. https://doi.org/10.1093/nar/gkae268.
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015;43W1:W39–49. https://doi.org/10.1093/nar/gkv416.
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7. https://doi.org/10.1093/nar/30.1.325.
Huan X, Li L, Liu Y, Kong Z, Liu Y, Wang Q, Liu J, Zhang P, Guo Y, Qin P. Integrating transcriptomics and metabolomics to analyze quinoa (Chenopodium quinoa Willd.) responses to drought stress and rewatering. Front Plant Sci. 2022;13:988861. https://doi.org/10.3389/fpls.2022.988861.
Xie H, Wang Q, Zhang P, Zhang X, Huang T, Guo Y, Liu J, Li L, Li H, Qin P. Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures. Biomolecules. 2022;12(7):977. https://doi.org/10.3390/biom12070977.
Xie H, Zhang P, Jiang C, Wang Q, Guo Y, Zhang X, Huang T, Liu J, Li L, Li H, Wang H, Qin P. Combined transcriptomic and metabolomic analyses of high temperature stress response of quinoa seedlings. BMC Plant Biol. 2023;23(1):292. https://doi.org/10.1186/s12870-023-04310-y.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. PLoS ONE. 2016;11(6):e0157022. https://doi.org/10.1371/journal.pone.0157022. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data.
Li H, Wang Q, Huang T, Liu J, Zhang P, Li L, Xie H, Wang H, Liu C, Qin P. Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers. Int J Mol Sci. 2023;24(14):11580. https://doi.org/10.3390/ijms241411580.
Wang Q, Guo Y, Huang T, Zhang X, Zhang P, Xie H, Liu J, Li L, Kong Z, Qin P. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Quinoa Seedlings to Different Phosphorus Stresses. Int J Mol Sci. 2022;23(9):4704. https://doi.org/10.3390/ijms23094704.
Huang T, Zhang X, Wang Q, Guo Y, Xie H, Li L, Zhang P, Liu J, Qin P. Metabolome and transcriptome profiles in quinoa seedlings in response to potassium supply. BMC Plant Biol. 2022;22(1):604. https://doi.org/10.1186/s12870-022-03928-8.