
Bonifacio, A. Chenopodium Sp.: Genetic resources, ethnobotany, and geographic distribution. Food Rev. Int. 19, 1–7 (2003).
Hussain, M. I. et al. Botany, nutritional value, phytochemical composition and biological activities of Quinoa. Plants 10, 2258 (2021).
Nowak, V., Du, J. & Charrondière, U. R. Assessment of the nutritional composition of Quinoa (Chenopodium Quinoa Willd). Food Chem. 193, 47–54 (2016).
Arguello-Hernández, P., Samaniego, I., Leguizamo, A., Bernalte-García, M. J. & Ayuso-Yuste, M. C. Nutritional and functional properties of Quinoa (Chenopodium Quinoa Willd.) Chimborazo ecotype: Insights into chemical composition. Agriculture 14, 396 (2024).
James, L. E. A. Quinoa (Chenopodium Quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 58, 1–31 (2009).
Vilcacundo, R. & Hernández-Ledesma, B. Nutritional and biological value of Quinoa (Chenopodium Quinoa Willd). Curr. Opin. Food Sci. 14, 1–6 (2017).
Filho, A. M. M. et al. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618–1630 (2017).
Jacobsen, S. E., Mujica, A. & Jensen, C. The resistance of Quinoa (Chenopodium Quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19, 99–109 (2003).
Angeli, V. et al. Quinoa (Chenopodium Quinoa Willd.): An overview of the potentials of the golden grain and socio-economic and environmental aspects of its cultivation and marketization. Foods 9, 216 (2020).
Bedoya-Perales, N. S., Pumi, G., Talamini, E. & Padula, A. D. The Quinoa boom in Peru: Will land competition threaten sustainability in one of the cradles of agriculture? Land. Use Policy 79, 475–480 (2018).
Jacobsen, S. E. The worldwide potential for Quinoa (Chenopodium Quinoa Willd). Food Rev. Int. 19, 167–177 (2003).
Alandia, G., Rodriguez, J., Jacobsen, S. E., Bazile, D. & Condori, B. Global expansion of Quinoa and challenges for the Andean region. Glob. Food Secur. 26, 100429 (2020).
Xiao, Z. & Zhang, G. Development and utilization of Quinoa and its resources. Wild Plant. Resour. China 33, 62–66 (2014).
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108, 20260–20264 (2011).
Huang, J. & Yang, F. Current situation and prospect of Quinoa in Gansu. Gansu Agric. Sci. Technol. 49–52 (2015).
Yu, H. J., Mao, Y. & Lu Zeyang; Chen Guolin; Mao,Qian. Optimization of the Callus Induction System of Chenopodium quinoa Willd. Agric. Sci. Technol. 16, 2183–2188. https://doi.org/10.16175/j.cnki.1009-4229.2015.10.026 (2015).
Regalado, J., Tossi, V. E., Burrieza, H. P., Encina, C. & Pitta-Alvarez, S. I. Micropropagation protocol for coastal Quinoa. Plant. Cell. Tissue Organ. Cult. (PCTOC) 142, 213–219 (2020).
Eisa, S., Koyro, H., Kogel, K. & Imani, J. Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant Cell Tissue Organ Cult. 81, 243–246 (2005).
Hesami, M., Naderi, R. & Yoosefzadeh-Najafabadi, M. Optimizing sterilization conditions and growth regulator effects on in vitro shoot regeneration through direct organogenesis in Chenopodium quinoa. BioTechnol. J. Biotechnol. Comput. Biol. Bionanotechnol. 99 (2018).
Gong, Y., Guo, S., Wu, X., Chen, S. & You, C. Direct organogenesis protocol for in vitro propagation of Chenopodium quinoa. J. Article (2022).
Duan, P., Li, X., Jiao, R., Deng, Y. & Wang, C. Establishment of a fast propagation system for tissue culture of Quinoa stems. Shanxi Agric. Sci. 48, 1202–1206 (2020).
Hesami, M. & Daneshvar, M. H. Development of a regeneration protocol through indirect organogenesis in Chenopodium quinoa willd. Indo Am. J. Agric. Vet. Sci. 4, 25–32 (2016).
Cao, N. et al. Establishment of rapid propagation system in tissue culture of Quinoa. Seeds 37, 110–112. https://doi.org/10.16590/j.cnki.1001-4705.2018.10.110 (2018).
Tian, J. G. Z. et al. Induction and Proliferation Assay of Quinoa Callus. Agric. Sci. Technol. Newslett. 114–119 (2022).
Chang, P. Y. et al. Quinoa’s regeneration and fast propagation system. Mol. Plant Breed. 1–11 (2022).
Feng, X. Y. et al. In vitro culture of taxane-rich yew. Chin. Bullet. Bot. 1–9 (2023).
Dashek, W. V. & Erickson, S. S. Isolation, assay, biosynthesis, metabolism, uptake and translocation, and function of proline in plant cells and tissues. Bot. Rev. 47, 349–385 (1981).
Priya, M. et al. Securing reproductive function in Mungbean grown under high temperature environment with exogenous application of proline. Plant Physiol. Biochem. 140, 136–150 (2019).
Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhriss, M. & Ben Abdullah, F. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young Olive tree. J. Agric. Food Chem. 58, 4216–4222 (2010).
Smirnoff, N. & Cumbes, Q. J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057–1060 (1989).
Ashraf, M. & Foolad, M. R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216 (2007).
Wang, W. W. et al. Effects of exogenous proline on growth, antioxidant enzyme activity and osmotic regulator accumulation of radish seedlings under salt stress. J. Jiangxi Agric. 31, 51–56. https://doi.org/10.19386/j.cnki.jxnyxb.2019.03.09 (2019).
Yan, Z., Sun, J. & Guo, S. Effect of exogenous proline on growth, photosynthesis and photosynthetic fluorescence parameters of melon seedlings under salt stress. J. Jiangsu Agric. 29, 1125–1130 (2013).
Liu, S. G. et al. Effects of proline on active oxygen metabolism and osmotic regulator content of cucumber seedlings under high temperature stress. J. Northwest Agric. 19, 127–131 (2010).
Pawar, B. et al. Proline and silver nitrate promotes multiple shoot induction from mature embryo and shoot tip explants of Sorghum. Sugar Tech. 25, 1187–1195 (2023).
Chowdhry, C. N., Tyagi, A., Maheshwari, N. & Maheshwari, S. Effect of L-proline and L-tryptophan on somatic embryogenesis and plantlet regeneration of rice (Oryza sativa L. Cv. Pusa 169). Plant Cell Tissue Organ Cult. 32, 357–361 (1993).
Pawar, B. et al. Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Sci. 22, 283–289 (2015).
Mahdavi Rad, S., Yousefi Rad, M. & Sharif Moghadasi, M. Physiological and morphological characteristics of drought-stressed Chenopodium quinoa Willd, as affected by proline and ascorbic acid. Commun. Soil Sci. Plant Anal. 53, 1402–1410 (2022).
Zhou, M. & Yang, J. Delaying or promoting? Manipulation of leaf senescence to improve crop yield and quality. Planta 258, 48 (2023).
Kumar, S., Kumar, S. & Mohapatra, T. Interaction between macro-and micro-nutrients in plants. Front. Plant Sci. 12, 665583 (2021).
Fan, X., Zhou, X., Chen, H., Tang, M. & Xie, X. Cross-talks between macro-and micronutrient uptake and signaling in plants. Front. Plant Sci. 12, 663477 (2021).
Chin, C. K., Stanly, C., Chew, B. L. & Subramaniam, S. Modified basal culture medium improves proliferation of Dendrobium Sabin Blue’s protocorm-like bodies (PLBs). Biologia 76, 1433–1443 (2021).
Li, S. M., Zheng, H. X., Zhang, X. S. & Sui, N. Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep. 40, 271–282 (2021).
Gomes, G. & Scortecci, K. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 23, 894–904 (2021).
Tian, L. et al. Triploid plant regeneration from mature endosperms of Sapium sebiferum. Plant. Growth Regul. 68, 319–324 (2012).
Yan, X. et al. Efficient organogenesis and taxifolin production system from mature zygotic embryos and needles in larch. For. Res. 3 (2023).
Dang, S., Gao, R., Zhang, Y. & Feng, Y. In vitro regeneration and its histological characteristics of Dioscorea Nipponica Makino. Sci. Rep. 12, 18436 (2022).
Shwe, S. S. & Leung, D. W. Plant regeneration from Eucalyptus bosistoana callus culture. Vitro Cell. Dev. Biol.-Plant. 56, 718–725 (2020).
Miguel, S., Michel, C., Biteau, F., Hehn, A. & Bourgaud, F. In vitro plant regeneration and Agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis. Sci. Rep. 10, 17482 (2020).
Gethami, F. R. A. & Sayed, H. E. S. A. E. In vitro: Influence of various concentrations of plant growth regulators (BAP & NAA) and sucrose on regeneration of Chenopodium quinoa willd. Plant. Asian J. Biol. 9, 34–43 (2020).
Yang, S. et al. Analysis of biochemical and physiological changes in wheat tissue culture using different germplasms and explant types. Acta Physiol. Plant. 37, 1–10 (2015).
Salvi, N. D., Singh, H., Tivarekar, S. & Eapen, S. Plant regeneration from different explants of Neem. Plant Cell Tissue Organ Cult. 65, 159–162 (2001).
Yan, M. M. et al. Effects of explant type, culture media and growth regulators on callus induction and plant regeneration of Chinese Jiaotou (Allium chinense). Sci. Hort. 123, 124–128 (2009).
Gourguillon, L., Rustenholz, C., Lobstein, A. & Gondet, L. Callus induction and establishment of cell suspension cultures of the halophyte Armeria maritima (Mill.) willd. Sci. Hort. 233, 407–411 (2018).